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RATIONALE 

I have always been interested in space travel. The prospect of exploring new planets excites me 
entirely. Last year was the moon landing’s 50th anniversary. This was when I first deeply considered 
my interest and began following the progress and activity of SpaceX, tracking their progress in 
reusable rockets and innovative launch procedures. More recently, I watched the film, Hidden 
Figures. I became intrigued by rocket trajectory analysis and began to look for an opportunity to 
perform these mathematical trajectory calculations. 

INTRODUCTION 

My most memorable experience following SpaceX was the 2018 Falcon Heavy Test Flight, still the 
world’s most powerful rocket with 64 metric tonnes in orbital lift capacity (SpaceX, 2020). Thus, it is 
the best candidate for my trajectory study. Luckily, SpaceX streams telemetry data for their flights 
live, with predictive figures prior to launch. However, SpaceX do not publicly release analysed data, 
meaning mathematical interpolation and extrapolation of this raw telemetry is generally the role of 
the space exploration fan community, using their own methods. In this exploration, I will contribute 
to this community, providing my own mathematical interpretation of the telemetry data and 
assessing its accuracy against other analyses. My piecewise cartesian method, with a foundation 
in regression analysis, will see itself more accessible than some of the more complex processes 
used in the community. Additionally, with my prior interest, I will pair my Falcon Heavy knowledge 
with these mathematical concepts to generate the most accurate and visual results possible. 

The 2018 Falcon Heavy Test Flight’s mission objective was to launch the payload, Elon Musk’s 
personal Tesla Roadster, into heliocentric orbit with maximum altitude equivalent to Mars’ orbital 
radius (SpaceX, 2018). To accomplish this, the Falcon Heavy used its two stages: a vertical launch, 
before gradually turning until the rocket’s path was tangential to the Earth’s curvature. This was at 
the payload’s highest Earth altitude before moving outwards towards Mars. The full launch curve is 
shown in the flight path found in Figure 1, while I only focus on the main curved path of the payload. 

Figure 1: Flight path for the Falcon Heavy Test Flight (Musk, 2018) 
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DATA IDENTIFICATION AND INITIAL REGRESSION ANALYSIS 

Alongside SpaceX’s live webcast of the test flight was the live telemetry data. This showed time 
after launch, current altitude from Earth’s surface and velocity magnitude. The figures were accurate 
to one second, so I manually created a table with time, altitude and velocity values every second 
for the first 500 seconds after launch. After this time, the altitude began to decline and I was only 
interested in the ascension of the rocket (SpaceX, 2018). Figure 2 provides the first 19 seconds of 
data, after I standardised the values into SI units: seconds [s], metres [m] and metres per second 
[m∙s-1] respectively. I left the same number of significant figures as in the original telemetry data. 

Next, I plotted the two graphs: altitude against time (Figure 3) and velocity against time (Figure 4). 

To perform cartesian analysis, I chose a function to represent the data. This meant a regression 
analysis, in using a function to represent a data trend was necessary. The smooth transition from 
minimum to maximum with one inflection point in Figure 3 reminded me of the distinctive shape of 

a logistic function. These have the form 𝑦 =
௅

ଵା௘షೖ(ೣష೎)
 where 𝐿 is an asymptotic maximum of 𝑦, 𝑐 is 

the 𝑥 position of an inflection point and 𝑘 relates to steepness at the inflection point (New York 
University | Center for Neural Science, 2020). I made 𝐿 the maximum altitude reached (178967𝑚) 
and it looked as though the inflection point was at 𝑥 ≈ 190𝑠, being my 𝑐 value. I then used Desmos, 
a graph manipulation tool, to compare this function with the altitude data. I manually changed 𝑘 until 
my logistic regression seemed to fit best. The coefficient of determination (𝑅ଶ value) for the curve 
when 𝑘 = 0.02 was 𝑅ଶ ≈ 0.9838. This is a very strong correlation, as shown in Figure 5. 

Figure 3: Raw data for altitude vs. time during ascension Figure 4: Raw data for velocity vs. time during ascension 

Time (s) Altitude (m) Velocity (m∙s-1) Time (s) Altitude (m) Velocity (m∙s-1) 
0 0 0.000 10 172 42.089 
1 1 1.056 11 217 47.785 
2 3 2.872 12 267 53.063 
3 7 6.111 13 323 58.341 
4 15 10.143 14 384 64.729 
5 28 15.422 15 452 71.115 
6 46 20.837 16 526 76.948 
7 70 26.115 17 606 82.785 
8 98 31.392 18 692 89.170 
9 132 36.674 19 784 95.145 

Figure 2: Raw time, altitude, and velocity values for first 19 seconds of ascension 
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Although the correlation is strong, I was 
unsatisfied with how the regression did 
not capture the data’s 𝑦-intercept value of 
0 or its abnormal curvature after the 
inflection point. To capture these data 
trend changes better, I split the raw data 
into subsections. I thought if each 
subsection had its own accurate 
regression, my regression would be better 
over the total 500 seconds. I made the 
splits at the key launch stages in Figure 1: 
booster engine cut off (BECO) (𝑡 ≈ 153); 
main engine cut off (MECO) (𝑡 ≈ 186) 
and; second stage beginning (𝑡 ≈ 196). 
SpaceX published these times prior to 
launch and I chose them as they mark 
changes in the forces being applied to the 
payload from thrusters (SpaceX, 2018). 

For the most accurate and systematic analysis, I used polynomial regression analysis. I instructed 
Desmos to generate a polynomial in the form: 𝑦 = 𝑎௡𝑥௡ + 𝑎௡ିଵ𝑥௡ିଵ + 𝑎௡ିଶ𝑥௡ିଶ + ⋯ + 𝑎ଵ𝑥 + 𝑎଴; to 
each data subsection, knowing that a higher degree (𝑛 value) would give more accuracy in the 
domain (Agarwal, 2018). Desmos then provided me with the parameters, 𝑎௡, 𝑎௡ିଵ, … , 𝑎଴, for the 𝑛௧௛ 
degree polynomial with sufficient accuracy to warrant a displayed 𝑅ଶ ≈ 1. The real 𝑅ଶ, however, 
would be slightly lower. When limited to their respective domains, the polynomials formed Figure 6 
and Figure 7. For the regression of the first subsection in each graph, I set the constant, 𝑎଴, to 0. 
Since both altitude and velocity began at 0, I wanted to emulate this by removing vertical shift. 

 

 

I was extremely pleased with the much better trend and 𝑅ଶ ≈ 1 values from data splitting. This was 
also important as it segregated the distinctively changing features of the velocity graph. These are 
now piecewise functions, defined differently for different domain intervals (Lumen Learning, 2020). 
This was also much more accurate than my ‘guess and check’ for finding the logistic 𝑘 value. 

Figure 5: Curve fitting of logistic function (green) to altitude vs. time data 
(red) (Desmos, Inc., 2020) 

Figure 6: Piecewise-defined polynomial regression analysis of altitude 
vs. time (Desmos, Inc., 2020) 

Figure 7: Piecewise-defined polynomial regression analysis of 
velocity vs. time (Desmos, Inc., 2020) 
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Desmos cited some of my coefficients, generally for the polynomial degrees above 10, as 0. I thus 
thought they were unnecessary. However, I was shocked that when I removed these terms, the 
function changed drastically. I believe that these parameters were not 0 but were so small that 
Demos could not show them. So, I was unable to provide the exact polynomial equations here. 
Instead, I defined Figure 6 as 𝑠௬(𝑡), being the payload’s 𝑦 directional displacement with respect to 

time, and Figure 7 as 𝑣(𝑡), being its instantaneous velocity magnitude with respect to time. 

VARIABLE DIRECTION DEFINITIONS 

After referring to the 𝑦 direction, I will define my two directions of movement: the 𝑥 and 𝑦 direction. 
Since SpaceX’s altitude data is relative to Earth’s position, it would be unreasonable at this stage, 
to assign an unmoving ‘cosmic’ linear 𝑦 or 𝑥 direction. As such, I define a coordinate system relating 
to the Earth’s surface, such that: at any one position in space: 

1. The direction of the increasing 𝑦 coordinate 
is radially away from the centre of the Earth. 

2. The direction of the increasing 𝑥 coordinate 
is tangential to Earth’s curvature directly 
below but points away from the launch site. 

These directions, for further use, are illustrated 
in Figure 8. However, they rely on the 
assumptions that: firstly, the Falcon Heavy does 
not travel at least halfway around the Earth 
(which it did not) and; secondly, the Falcon 
heavy will not turn into a third axis, mapping its 
motion on a two-dimensional plane (which was 
almost always the case) (SpaceX, 2018). 
Hence, these assumptions seem reasonable. 

BI-DIRECTIONAL VELOCITY AND ANGLE CALCULATIONS 

Now that my directions are defined and the 
altitude and velocity curves have cartesian 
approximations, I will use differential calculus to 
discover more flight path properties. It was 

known that 𝑣(𝑡) =
ௗ

ௗ௧
𝑠(𝑡) when 𝑣 is velocity, 𝑠 is 

displacement and 𝑡 is time (Elert, 2020). Thus, I 
found vertical velocity against time as the 
derivative of vertical displacement (altitude) 
against time. However, I had an issue with non-
differentiability from this function’s discontinuity. 

Figure 9 shows 𝑠௬(𝑡) after I zoomed in on the 

piecewise boundary at the commencement of 
flight stage 2 at 𝑡 = 196. 

Figure 8: Illustration of axis definition (blue: Earth, purple: 
launch point, red: y-axis, green: x-axis) (Desmos, Inc., 2020) 

Figure 9: Close analysis of the 3rd to 4th data subset jump in altitude 
vs. time (Desmos, Inc., 2020) 
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For me to differentiate this function, the function must be differentiable. Continuity at a point is a 
necessary condition for differentiability at that point. For this to occur at point 𝑥 = 𝑎 on function 𝑓(𝑥), 
the following condition must be satisfied (Fannon, Kadelburg, Woolley, & Ward, 2013): 

lim
௫→௔ష

𝑓(𝑥) = lim
௫→௔శ

𝑓(𝑥) = lim
௫→௔

𝑓(𝑥) = 𝑓(𝑎) 

I see this to mean that at point 𝑥 = 𝑎, there must not be a sudden change in the function’s value 
without a continuous slope between. However, for the boundary of 𝑠௬(𝑡) seen in Figure 9, I found 

that lim
௧→ଵଽ଺ష

𝑠௬(𝑡) ≠ lim
௧→ଵଽ଺శ

𝑠௬(𝑡)  since lim
௧→ଵଽ଺ష

𝑠௬(𝑡) ≈ 94674.228  and lim
௧→ଵଽ଺శ

𝑠௬(𝑡) ≈ 94637.795 . This 

was the same for all 5 other piecewise boundaries in 𝑠௬(𝑡) and 𝑣(𝑡). This means that neither of 

these functions are continuous across 0 ≤ 𝑡 ≤ 500. Then, from the definition of differentiability, I 
unfortunately deduced that neither of them were differentiable either. 

I saw this non-differentiability as a serious issue for my calculus-based analysis and it confused me 
for a considerable amount of time. However, I eventually bypassed this by redefining 𝑠௬(𝑡) and 𝑣(𝑡) 

in terms of their component functions below, where 𝑓௡(𝑥) is the 𝑛௧௛ component of piecewise 𝑓(𝑥). 

𝑠௬(𝑡) =

⎩
⎪
⎨

⎪
⎧

𝑠௬ଵ(𝑡),      0 ≤ 𝑡 < 153

𝑠௬ଶ(𝑡), 153 ≤ 𝑡 < 186

𝑠௬ଷ(𝑡), 186 ≤ 𝑡 < 196

𝑠௬ସ(𝑡), 196 ≤ 𝑡 ≤ 500

 𝑣(𝑡) =

⎩
⎨

⎧
𝑣ଵ(𝑡),      0 ≤ 𝑡 < 153

𝑣ଶ(𝑡), 153 ≤ 𝑡 < 186

𝑣ଷ(𝑡), 186 ≤ 𝑡 < 196

𝑣ସ(𝑡), 196 ≤ 𝑡 ≤ 500

 

From this, I defined 𝑣௬(𝑡) =
ௗ

ௗ௧
𝑠௬(𝑡) , I first differentiated its four component functions individually 

and then reformed the piecewise function under the same boundary domains as below: 

𝑣௬(𝑡) =

⎩
⎪
⎨

⎪
⎧

𝑣௬ଵ(𝑡) = 𝑠௬ଵ′(𝑡),      0 ≤ 𝑡 < 153

𝑣௬ଶ(𝑡) = 𝑠௬ଶ′(𝑡), 153 ≤ 𝑡 < 186

𝑣௬ଷ(𝑡) = 𝑠௬ଷ′(𝑡), 186 ≤ 𝑡 < 196

𝑣௬ସ(𝑡) = 𝑠௬ସ′(𝑡), 196 ≤ 𝑡 ≤ 500

 

As seen in Figure 10, as the rocket 
accelerates, vertical velocity increases. 
However, due to the turn in its path, the 
Falcon Heavy’s vertical velocity returns to 
zero at its maximum altitude. I believe this is 
because of the new 𝑥 directional velocity. 

I also immediately noticed prominent discontinuities in 𝑣௬(𝑡) at the 

points 𝑡 = 153, 𝑡 = 186, 𝑡 = 196. However, I decided to pass these 
off as mathematical aberrations due to my method of bypassing non-
differentiability. This is because they imply sudden changes in 
𝑠௬(𝑡)’s gradient; which did occur. This is a benefit of my cartesian 

visual model, being accessible and easily adjustable, while a point-
by-point analysis, where one equation is applied to each data point, 
may not recognise or investigate this impossible velocity change. 

Figure 10: Comparison of velocity vs. time and vertical 
velocity vs. time graphs (Desmos, Inc., 2020) 
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My next stage is computing velocity in the 𝑥 
direction with respect to time, which I define as 
𝑣௫(𝑡). Based on Figure 11 for a 𝑣 velocity rocket 
travelling at angle 𝜃௩  from the 𝑦  direction, the 
Pythagorean theorem may be used to calculate 
𝑣௫(𝑡) from 𝑣௬(𝑡) and 𝑣(𝑡) with the equation: 

𝑣௫(𝑡) = ට൫𝑣(𝑡)൯
ଶ

− ቀ𝑣௬(𝑡)ቁ
ଶ

 {𝑣(𝑡) ≥ 𝑣௬(𝑡)} 

However, with Figure 12 showing the first 50 
seconds of 𝑣௫(𝑡), I noticed that some intervals 
were undefined, just before the function 
increases significantly. This issue was confusing 
more me, so I revisited the launch. 

After watching the launch webcast again, I 
realised that in the interval before 𝑡 = 18.756, the 
Falcon Heavy had not even begun its turn. As 
such, if any tool error in velocity or altitude 
measurements caused the measured 𝑣௬(𝑡)  to 

exceed 𝑣(𝑡)  in this time, then my use of 
Pythagoras’ theorem would be undefined. As 
such, from intuition, to repair this issue, I 
redefined 𝑣௫(𝑡) to be equal to 0 before the rocket 
turned. The new graph is shown in Figure 13 and 
the piecewise equation appears below: 

𝑣௫(𝑡) = ቐ

0,                                   0 ≤ 𝑡 < 18.756

ට൫𝑣(𝑡)൯
ଶ

− ቀ𝑣௬(𝑡)ቁ
ଶ

, 18756 ≤ 𝑡 ≤ 500
 

 
 
Reflecting on Figure 11, I realised that a useful 
way to examine the instantaneous trajectory of 
the rocket would be to form a curve of 𝜃௩ against 
time. Using the trigonometric identity of tangent, 

in Figure 11 meaning that tan(𝜃) =
௩ೣ

௩೤
, I defined 

𝜃௩(𝑡) such that 𝜃௩(𝑡) = arctan ൬
௩ೣ(௧)

௩೤(௧)
൰ and this is 

plotted in Figure 14. I once again overlooked the 
remnants of non-differentiability manipulation at 
the piecewise domain boundaries. With this 
consideration, it is clear that the curve plateaus 
at 𝜃௩(500) ≈ 1.5701௖ ≈ 89.96° . This confirms 
that the rocket initially flies vertically before 
slowly beginning to follow the 𝑥 direction. 

Figure 12: First 50 seconds of horizontal velocity vs. time without tool 
error correction (Desmos, Inc., 2020) 

Figure 13: Horizontal velocity vs. time with tool error correction 
(Desmos, Inc., 2020) 
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Figure 14: Velocity angle from y-direction vs. time (Desmos, Inc., 2020) 
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EARTH SURFACE MOTION PROJECTION 

When SpaceX tracks the motion of their rockets to retrieve 
them for reusability, which they are leading the world in, 
flight profiles are used (SpaceX, 2020). Flight profiles are 
graphical plots of altitude against a quantity called 
downrange distance. In essence, downrange distance is 
the distance along the surface of the earth that the rocket 
has travelled from the launch site (National Aeronautics and 
Space Administration, 2020). I have developed my own 
method to mathematically derive downrange distance with 
respect to time for the Falcon Heavy Test Flight, using the 
information that I have. 

In Figure 15, I show a rocket soaring at a distance equal to 
𝑟௘ + 𝑠௬ from Earth’s centre. This is the radius of the Earth 

and the rocket’s altitude. I also show 𝑣௘, the projection of 
distance 𝑣௫ onto the surface of the Earth at radius 𝑟௘. Since 
𝑣௫  is the 𝑥  direction distance the rocket travels in one 
second, 𝑣௘  is effectively the velocity of the rocket on the 
Earth’s surface. 𝑣௘  is smaller than 𝑣௫  when 𝑠௬  is positive 

because across a constant Earth angle of 𝜃௘, a concentric 
circular sector of larger radius will have a longer arc length. 

In one second, 𝑣௫ is small enough that I can approximate it as an arc length around the centre of 
the Earth at radius 𝑟௘ + 𝑠௬ across angle 𝜃௘ (Tarquin Group, 2020). The arc length formula states 

that this arc length is 𝑣௫ = 𝜃௘(𝑟௘ + 𝑠௬)  for 𝜃௘  in radians (Purplemath, 2020). In Figure 15, I 

demonstrated two arc lengths, including that of 𝑣௫ . However, I also have that 𝑣௘ = 𝜃௘𝑟௘ . By 
rearranging these and by the fact that the sweeping angle 𝜃௘ stays constant, I found the equality: 

𝜃௘ =
𝑣௫

𝑟௘ + 𝑠௬
=

𝑣௘

𝑟௘
, ∴ 𝑣௘ =

𝑟௘

𝑟௘ + 𝑠௬
𝑣௫ 

From this ratio, I defined Earth surface 
velocity of the Falcon Heavy against 
time, 𝑣௘(𝑡) , when 𝑟௘ = 6371000𝑚 , as 

𝑣௘(𝑡) =
௥೐

௥೐ା௦೤(௧)
𝑣௫(𝑡) . I used the mean 

radius of the Earth, calculated by 
volume. 𝑣௘(𝑡)  is compared to 𝑣௫(𝑡)  in 
Figure 16 (Williams, 2020). 

Evidently, the two curves begin 
together, yet as time goes on, the 
horizontal velocity exceeds the 
equivalent velocity on the Earth’s 
surface. This makes sense to me 
because with a higher altitude, the ratio 
coefficient used to find 𝑣௘(𝑡) decreases. 

Figure 15: Earth surface velocity visualisation from arc 
length formula 

Figure 16: Comparison of horizontal and surface velocity vs. time 
(Desmos, Inc., 2020) 
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Since 𝑠ᇱ(𝑡) = 𝑣(𝑡), then ∫ 𝑣(𝑡)𝑑𝑡 = 𝑠(𝑡) + 𝑐 (Elert, 2020). Thus, for the Falcon Heavy’s downrange 
distance 𝑑ௗ௢௪௡(𝑡) (its total distance travelled on the Earth’s surface), I think 𝑑ௗ௢௪௡(𝑡) = ∫ 𝑣௘(𝑡)𝑑𝑡. I 

tried to define 𝑑ௗ௢௪௡(𝑡) = ∫ 𝑣௘(𝑥)𝑑𝑥
௫ୀ௧

௫ୀ଴
 in Desmos, however, while it initially worked each time, 

Desmos could not process all of the calculations and the software crashed multiple times. 

This was momentarily frustrating for me, until I realised I could use integral approximation. I 

visualised the definite integral ∫ 𝑓(𝑥)𝑑𝑥
௫ୀ௕

௫ୀ௔
 as the sum all infinitely thin width (𝑑𝑥) rectangles under 

the curve 𝑓(𝑥) between 𝑥 = 𝑎 and 𝑥 = 𝑏. Therefore, since ∫ 𝑓(𝑥)𝑑𝑥
௫ୀ௕

௫ୀ௔
= lim

ఋ௫→଴
∑ 𝑓(𝑥)𝛿𝑥௫ୀ௕

௫ୀ௔ , I simply 

removed the limit statement and increased the rectangles’ widths to a time interval of one second 
(a small interval for space travel). This produced that 𝑑ௗ௢௪௡(𝑡) = ∑ 𝑣௘(𝑥)௫ୀ௧

௫ୀ଴ . I have put this function 
in Figure 17, but when looking closely, appears as 500 horizontal lines of length 1 second. So, I 
treated these lines as data points, fitting another polynomial regression to gain the smooth curve 
seen in Figure 18. Once again, I set the constant term, 𝑎଴, to 0, so to maintain that 𝑑ௗ௢௪௡(𝑡) ≥ 0. 

PARAMETRIC FLIGHT PROFILE AND ARC LENGTH 

The parametrisation of a curve is when the 𝑥 
axis variable and 𝑦 axis variable are treated as 
two independent functions of one auxiliary 
parameter, usually 𝑡  (School of Mathematics 
and Physics, The University of Queensland, 
2020). A parametric curve on a cartesian plane 
is such that ൫𝐹(𝑡), 𝐺(𝑡)൯ are the coordinates of 
each point. The individual functions 𝑥 = 𝐹(𝑡) 
and 𝑦 = 𝐺(𝑡) are said to parametrise the curve 
(School of Mathematics and Physics, The University of Queensland, 2020). Figure 19 illustrates this 
parametric definition in the 𝑥 and 𝑦 coordinate movements as 𝑡 changes. 

I find this theory extremely interesting as it seems like the classical Cartesian functions that we use, 
such as 𝑦 = 𝐺(𝑥), are just a simplified version of a more general parametric case. This is the case 

of parametric equation ൜
𝑥 = 𝐹(𝑡)

𝑦 = 𝐺(𝑡)
 when 𝑥 = 𝐹(𝑡) = 𝑡, thus simplifying 𝑦 = 𝐺(𝑡) to be 𝑦 = 𝐺(𝑥). 

Figure 17: Downrange distance vs. time sum approximation 
(Desmos, Inc., 2020) 

Figure 18: Downrange distance vs. time polynomial regression 
(Desmos, Inc., 2020) 

Figure 19: Basic illustration of curve parametrisation (School of 
Mathematics and Physics, The University of Queensland, 2020) 
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From this definition of a parametric 
equation and the fact that a flight profile is 
the plot of altitude against downrange 
distance, I believe that for the Falcon 
Heavy Test Flight, I have found its flight 
profile to be the parametric equation: 

൜
𝑥 = 𝑑ௗ௢௪௡(𝑡)

𝑦 = 𝑠௬(𝑡)
 {0 ≤ 𝑡 ≤ 500} 

I show this curve in Figure 20. For me, this 
is an incredibly impressive result, because 
this parametric flight profile shows what 
the path of the Falcon Heavy would have 
looked like, had the Earth been flat and ran 
across the 𝑥 axis. I find that really cool! 

I now want to find the total distance travelled by the Falcon Heavy in ascension, which I think should 
be the total length of the parametric curve in Figure 20. Similar to my visualisation of a definite 
integral, I imagined the length 𝐿 between 𝑡 = 𝑎 and 𝑡 = 𝑏 in a parametric curve as the sum of the 
lengths of all infinitely short lines in this interval. From here, I applied Pythagoras’ theorem to find 
these lengths by an infinitely small change in the 𝑥 coordinate and 𝑦 coordinate. 

Thus, for parametric equation: ൜
𝑥 = 𝐹(𝑡)

𝑦 = 𝐺(𝑡)
, 𝐿 = lim

ఋ௧→଴
∑ ට൫F(𝑡 + 𝛿𝑡) − 𝐹(𝑡)൯

ଶ
+ ൫G(𝑡 + 𝛿𝑡) − 𝐺(𝑡)൯

ଶ௧ୀ௕
௧ୀ௔  

From here, I remembered that for a line, the gradient, 𝑚 =
୼௬

୼௫
, and hence, Δ𝑦 = 𝑚Δ𝑥. The derivative 

of a curve is a continuous representation of its gradient, so I thought 𝐹(𝑡 + 𝛿𝑡) − 𝐹(𝑡) = 𝐹ᇱ(𝑡) ∙ 𝛿𝑡 
when 𝛿𝑡  approaches 0. After later learning Euler’s method for numerical integration, I was 
astonished that my logic was simply a variation of Euler’s method when the step value approaches 
0  (Blythe, et al., 2005). As I continued to develop my curve length equation below by this 
substitution, this discovery gave me great confidence in my procedure, also prompting further work. 

For ൜
𝑥 = 𝐹(𝑡)

𝑦 = 𝐺(𝑡)
, 𝐿 = lim

ఋ௧→଴
∑ ඥ(Fᇱ(t)𝛿𝑡)ଶ + (𝐺ᇱ(𝑡)𝛿𝑡)ଶ௧ୀ௕

௧ୀ௔ = lim
ఋ௧→଴

∑ ට൫𝐹ᇱ(𝑡)൯
ଶ

+ ൫𝐺ᇱ(𝑡)൯
ଶ௧ୀ௕

௧ୀ௔ 𝛿𝑡 

Finally, I used the same logic as for integral approximation once again, where I converted the above 
sum into an integral. I was pleased when this gave me the final equation that the length of the 

parametric curve ൜
𝑥 = 𝐹(𝑡)

𝑦 = 𝐺(𝑡)
 between 𝑡 = 𝑎 and 𝑡 = 𝑏 was 𝐿 = ∫ ට൫𝐹ᇱ(𝑡)൯

ଶ
+ ൫𝐺ᇱ(𝑡)൯

ଶ
𝑑𝑡

௧ୀ௕

௧ୀ௔
. 

I was even more pleased after research when I found that my own derivation was not only correct, 
but had its own theory call the parametric arc length equation. As a result, for the Falcon Heavy’s 

flight profile ൜
𝑥 = 𝑑ௗ௢௪௡(𝑡)

𝑦 = 𝑠௬(𝑡)
 in 0 ≤ 𝑡 ≤ 500, I performed my own calculation. This enabled me to find 

that 𝐿 = ∫ ටቀ
ௗ

ௗ௧
𝑑ௗ௢௪௡(𝑡) ቁ

ଶ

+ ቀ
ௗ

ௗ௧
𝑠௬(𝑡)ቁ

ଶ

𝑑𝑡
௧ୀହ଴଴

௧ୀ଴
≈ 1461715𝑚; the total ascension distance travelled 

by the Falcon Heavy (School of Mathematics and Physics, The University of Queensland, 2020). 

Figure 20: Parametric flight profile of Falcon Heavy ascension (Desmos, Inc., 2020) 

൜
𝒙 = 𝒅𝒅𝒐𝒘𝒏(𝒕)

𝒚 = 𝒔𝒚(𝒕)
 {𝟎 ≤ 𝒕 ≤ 𝟓𝟎𝟎} 

downrange distance (m) 

al
tit

ud
e 

(m
) 
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POLAR CONVERSION FOR FLIGHT PROFILE 

However, I was still unsatisfied with this result, as it left the assumption that the Earth’s surface was 
flat and I wanted a way to show the Falcon Heavy’s real trajectory. So, I imagined a system where 
the Earth’s centre was the origin of a cartesian plane, so that the Falcon Heavy’s position could be 
shown as coordinates in relation to Earth. 

With my data, I immediately jumped to representing the Falcon Heavy’s position as a complex 
number on an Argand plane. This is because, when put in polar form, the complex number 𝑧 
appears as 𝑧 = |𝑧|𝑐𝑖𝑠(𝜃) = 𝑟𝑐𝑖𝑠(𝜃)  where 𝑟  is 𝑧 ’s displacement from the origin and 𝜃  is the 
sweeping angle of 𝑧 from the real plane (Urban, et al., 2008). To use this coordinate system based 
on magnitude and argument for the Falcon Heavy, I defined my unmoving ‘cosmic’ 𝑥 and 𝑦 axes to 
be the real and imaginary planes, respectively. From this, I had the magnitude of each polar rocket 
position from Earth’s centre as 𝑟 = 𝑟௘ + 𝑠௬. From the arc length of a sector equation, I also found 

the angle around the Earth that the rocket had travelled after launch to be 
ௗ೏೚ೢ೙

௥೐
. Thus, at any 

moment in time, the Falcon Heavy’s polar position was 𝑧(𝑡) = ห𝑟௘ + 𝑠௬(𝑡)ห𝑐𝑖𝑠 ቀ
గ

ଶ
−

ௗ೏೚ೢ೙(௧)

௥೐
ቁ. 

Since the rocket did not travel at least a quarter 

way around the Earth, I used 
గ

ଶ
−

ௗ೏೚ೢ೙(௧)

௥೐
 as the 

argument instead of 
ௗ೏೚ೢ೙(௧)

௥೐
. This was purely 

graphical, so that I could reflect the vertical 
launch as positive motion in the imaginary axis. 

Figure 21 shows how polar complex numbers are 
given cartesian coordinates. For complex 
number 𝑧 = 𝑟𝑐𝑖𝑠(𝜃), the real plane coordinate is 
𝑟𝑐𝑜𝑠(𝜃)  and the imaginary plane coordinate is 
𝑟𝑠𝑖𝑛(𝜃) (Urban, et al., 2008). 

From this, I made the two real and imaginary coordinate functions for the Falcon Heavy after launch 
when 𝑟௘ = 6371000𝑚 as the Earth’s previously stated mean radius by volume (Williams, 2020): 

𝑅𝑒(𝑡) = ൫𝑠௬(𝑡) + 6371000൯ cos ቀ
గ

ଶ
−

ௗ೏೚ೢ೙(௧)

଺ଷ଻ଵ଴଴଴
ቁ and 𝐼𝑚(𝑡) = ൫𝑠௬(𝑡) + 6371000൯ sin ቀ

గ

ଶ
−

ௗ೏೚ೢ೙(௧)

଺ଷ଻ଵ଴଴଴
ቁ. 

Since I had two independently operating axes based on one parameter, 𝑡, I built the parametric 

equation ൜
𝑥 = 𝑅𝑒(𝑡)

𝑦 = 𝐼𝑚(𝑡)
  {0 ≤ 𝑡 ≤ 500} from this real plan 𝑥 axis and imaginary plane 𝑦 axis . 

This parametric curve is Figure 22 with a 
circle of radius 𝑟௘  to represent the Earth. I 
was satisfied with this result, mostly based 
on how visually pleasing it looks. I also took 
another arc length of my new curve: 

𝐿 = න ට൫𝑅𝑒ᇱ(𝑡)൯
ଶ

+ ൫𝐼𝑚ᇱ(𝑡)൯
ଶ

𝑑𝑡
௧ୀହ଴଴

௧ୀ଴

 

∴ 𝐿 ≈ 1494191𝑚 

Figure 21: Real and imaginary coordinates of a polar complex number (Urban, et al., 2008) 

Figure 22: Falcon Heavy Test Flight  (blue: earth, red: flight path) (Desmos, Inc., 2020) 

൜
𝒙 = 𝑹𝒆(𝒕)

𝒚 = 𝑰𝒎(𝒕)
, {𝟎 ≤ 𝒕 ≤ 𝟓𝟎𝟎} 

𝒙𝟐 + 𝒚𝟐 = 𝟔𝟑𝟕𝟏𝟎𝟎𝟎𝟐 
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METHOD ACCURACY EVALUATION 

While the result above was visually pleasing, it surprised me that the arc length of the polar diagram 
was almost 3000m larger than that of the flight profile. This inherently indicates a degree of error, 
meaning it is important to assess the accuracy of my results. Since SpaceX does not release their 
own analysis of their telemetry data, I can only assess my result’s accuracy against the other 
analyses from the space exploration community. I was able to find various examples of community 
analysis, and while these may be prone to their own errors, they are the only gauge of accuracy 
and source of comparison that I have. However, the Falcon Heavy Test Flight is well-studied and 
mathematically investigated, so I believe that I can rely on the community’s calculations to assess 
the effectiveness of my method with reasonable confidence. 

In all of the external analyses I found, downrange distance was found and this was plotted against 
altitude to give a flight profile, meaning this remained the most important conclusion for me to 
compare my results from Figure 20 with. I also chose a form of analysis that does not rely on time, 
since other analyses may have recorded data from different times. I performed a simple comparison 
between my value for downrange distance at the maximum altitude of 𝑠௬(500) ≈ 178967𝑚, being 

𝑑ௗ௢௪௡(500) ≈ 1424725𝑚 and the same for other analyses. 

The three downrange distance values I found online, correlating to an altitude of 178967m, were 
1454871m, 1445554m and 1438756m. The latter two values were not in fact calculations from the 
telemetry, but predictions prior to the flight based on the information that SpaceX had published. 
Since these predictions are likely to be less accurate than the data analysis, when taking an average 
to be used as a literature value, the first value was weighted as 50% of the mean, while the other 
two were weighted at 25% each. This allowed the measured performance of the rocket to be 
demonstrated by this figure. As such, the community-predicted downrange distance at my maximum 

altitude was 𝑑ௗ௢௪௡
തതതതതതതത =

ଶ×ଵସହସ଼଻ଵାଵସସହହହସାଵସଷ଼଻ହ଺

ସ
≈ 1448513𝑚. Taking this calculation as a literature 

value, my calculation is approximately 24km lower, a percentage difference of -1.64%. In reality, for 
space travel, this is very accurate and I was ecstatic to find that my method was successful. 
However, I believe that it is not a coincidence that all of the literature community values were higher 
than mine by at least 10km. 

This may have been due to one of my early assumptions. In neglecting a third dimension of 
movement for the rocket, I assumed that all lateral motion would be negligible. However, in reality, 
it is almost inevitable that the Falcon Heavy would have moved in all three directions. If this had 
occurred, my analysis would not account for this lateral movement, causing my total downrange 
distance to be slightly smaller than the true value. 

METHOD ACCESSIBILITY AND APPLICATIONS 

Although this planar inaccuracy serves as a flaw in my method, the cartesian procedure that I used 
has benefits in its accessibility and applications which validify it for further use. Firstly, by conducting 
my analysis in a cartesian form with function manipulation, at each stage of analysis, changes in 
the data can be visibly seen. This allows effective human judgment over issues such as fluctuations 
due to bypassed undifferentiability, while an objective data analysis may propagate these issues, 
expanding error. This use of graphs in my analysis is then proven beneficial by its effectiveness in 
the visual tracking of a moving object that can be easily interpreted by anyone. 
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Additional, in the data science study of computational 
complexity, the “Big O Notation” of a mathematical 
algorithm is the relative time needed for an output 
based on input size (Batista, 2018). I believe that, 
since I processed all points from the initial data set in 
the same manner, it is likely that my algorithm would 
have an 𝑂(𝑛) notation. This means that if the number 
of input elements were increased by a factor of 𝑛, 
then the time needed to generate an output would be 
scaled by 𝑛 as well, being judged as fairly efficient by 
the legend in Figure 23. This is advantageous as it is 
extremely accessible to all investigators in the field. 

Finally, although the limits of Desmos as an application are 
the manipulation of two-dimensional data, my mindset when 
approaching the telemetry data for the launch could easily 
be transferred into three-dimensional analysis using the 
study of spherical coordinates. As an extension of my use of 
polar coordinates, relying on a magnitude and sweeping 
angle, spherical coordinates, as seen in Figure 24, rely on a 
magnitude, directional angle between two dimensions and a 
third angle of elevation into the third dimension to define the 
position of an object in three-dimensional space (called the 
radial distance, 𝑟, polar angle, 𝜃, and azimuthal angle, 𝜙, 
respectively) (Wolfram Research, Inc., 2020). Hence, my 
analysis finds more complex applications in the trajectory 
analysis of three-dimensional space travel. 

CONCLUDING STATEMENTS 

In this exploration, I took a personal interest of mine, being the trajectory tracking of rockets, in the 
context of the Falcon Heavy Test Flight from 2018, to generate a mathematical analysis of telemetry 
data released by SpaceX. I was able to develop a method by which I could calculate various 
kinematic quantities as functions of time after the launch of the Falcon Heavy, before then using 
parametric equations to show the rocket’s continuously changing position after launch. My method 
was not only successful, able to calculate some of the most valuable pieces of information for the 
future of rocket reusability to a percentage proximity of 1.64%, but also is accessible to all 
mathematical enquirers through its reasonably efficient Big O Notation. I was also able to reflect on 
my algorithm’s potential compatibility with spherical coordinates, being able to track the trajectory 
of much more complicated rocket launches which have motion in three-dimensional space through 
the use of parametric equations defined by 𝑥, 𝑦 and 𝑧 axes. As a result, with some adjustments for 
the third positional axis, my method for trajectory analysis, based on cartesian regression analysis 
and supplemented by my knowledge of SpaceX and the Falcon Heavy, could prove effective for the 
investigation into future space exploration missions.  

Figure 23: Big O Notation explanation visual (Batista, 2018) 

Figure 24: Spherical coordinates visual (Wolfram 
Research, Inc., 2020) 
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