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1 Abstract

This experiment pursued a systematic approach to quantitatively understand the behaviour of simple
linear circuits, given the possibility of an arbitrary input voltage. A voltage waveform is approximated by
piecewise list of linear functions, for which an analytic solution can be found for its complex Fourier series
coefficients. A program could then decompose the voltage waveform into a discrete set of AC components,
without the need for computing integrals. By exploiting the superposition properties of linear circuits, the
effect on current of each voltage component was analysed independently. The scope of this experiment
was LCR circuits, but the results indicate applicability for any possible arrangement.

Despite the predefined scope of Fourier series to periodic functions, non-repeating signals of finite time
length could have their transient effects computed. Furthermore, the method’s usefulness was extended
beyond calculating currents from voltages, allowing the theoretical calculation of any quantities in circuits
which could be found with complex methods, given sinusoidal time dependence. This proved it to be more
versatile, efficient and systematic than the standard methods of circuit analysis combined, being ordinary
differential equations and complex impedance analysis.

2 Introduction

2.1 Differential equations method

Classically, circuits made of passive devices are solved with differential equations. Figure 1 demon-
strates an LCR circuit, which consists of an inductor, L, capacitor, C, and resistor, R, in series, stimulated
by a voltage waveform V (t), with resulting current waveform I(t).

V (t)

L
C

R

I(t)

Figure 1: LCR circuit with arbitrary voltage waveform

Using Kirchoff’s voltage law and formulae for the potential difference across these passive devices, we
find that the charge on the capacitor, Q(t), follows:

L
d2Q

dt2
(t) +R

dQ

dt
(t) +

1

C
Q(t) = V (t) where I(t) =

dQ

dt
(t).

With an exponential function ansatz, and defining γ ≡ R/2L and ω0 ≡ 1/
√
LC, we find three comple-

mentary functions for this second-order inhomogeneous ordinary differential equation (Smith, 2022):

� Overdamped (γ > ω0): QCF (t) = e−γt
(
Ae

√
γ2−ω0

2t +Be−
√

γ2−ω0
2t
)

� Underdamped (γ < ω0): QCF (t) = e−γt
(
A cos

√
γ2 − ω0

2t+B sin
√
γ2 − ω0

2t
)

� Critically damped (γ = ω0): QCF (t) = e−γt (At+B) for A,B ∈ R.
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All symbolise an exponentially decaying transient response. The particular integral of the inhomoge-
neous term provides additional transient effects, or a steady-state solution in the case it is periodic. A
simple example is a stepped voltage of the form V (t) = V0 θ(t), where θ is the Heaviside theta function.
To solve this, we trial the constant solution QPI(t) = Q0, finding that Q0 = CV0. Applying the initial
conditions that Q(0) = 0 (cannot instantaneously charge capacitor) and I(0) = 0 (cannot instantaneously
introduce inductor current) gives the values of A and B, depending on the damping case. For example,
in the underdamped case, we differentiate and reach the final current:

I(t) =
V0

L
√

ω0
2 − γ2

e−γt sin
(√

ω0
2 − γ2t

)
θ(t).

Another basic example is for a harmonic voltage, such as V (t) = V0 cosωt. Inserting the oscillatory
anstaz QPI(t) = C cosωt+D sinωt into the differential equation, we find values of C and D:

C =
V0

L

ω0
2 − ω2

(ω0
2 − ω2)2 + (2ωγ)2

and D =
V0

L

2ωγ

(ω0
2 − ω2)2 + (2ωγ)2

.

We choose to neglect the transient response, meaning Q(t) = QPI(t) +����QCF (t). Further, we wish
to write the solution in the form Q(t) = A sin (ωt+ ϕ) for some A and ϕ. By using the relations,
D/C = − tanϕ and C2 +D2 = A2, and then differentiating, we find the steady-state current to be:

I(t) =
[−]ωV0

L

√
(ω0

2 − ω2)2 + (2ωγ)2
cos

(
ωt− tan−1

(
2ωγ

ω0
2 − ω2

)
+

π

2

)

with [−] if ω > ω0 and I(t) = V0
R cosωt if ω = ω0.

2.2 Complex AC impedance method

One can observe, in the harmonic example, that both V (t) and I(t) can be expressed as the real

component of a complex phasor, νeiωt, for some complex ν. If we denote these phasors by V (t) = ℜ
(
Ṽ (t)

)
and I(t) = ℜ

(
Ĩ(t)

)
, we define the complex impedance, Z(ω), as:

Z(ω) ≡ Ṽ (t)

Ĩ(t)
=

−iL

ω

((
ω0

2 − ω2
)
+ 2iωγ

)
.

This is known as AC Ohm’s law, relating the amplitude and phase of sinusoidal currents and voltages
for a specified complex impedance. The circuit’s impedance is calculated using the same rules for adding
resistances in series and parallel, given that resistors, capacitors and inductors have impedances ZR = R,
ZC = 1/iωC and ZL = iωL, respectively (Smith, 2022). Thus, for an LCR circuit, Z = iωL + 1

iωC + R
which becomes the number found above.

This method is evidently more efficient for computing the steady-state current of this circuit from a
sinusoidal voltage. However, it works for more circuits than just an LCR. Using impedance addition rules,
the impedance of any arbitrary formation of resistors, capacitors and inductors can be calculated.

2.3 Limitations of a priori methods

Each of the above methods have strengths and limitations. The strength of the differential equation
approach is that it is straight-forward to incorporate the voltage waveform into the differential equation.
Furthermore, it ensures that transient responses are captured. On the other hand, acquiring the differential
equation to begin with is difficult for more complicated arrangements of the passive devices, when the
currents splits across parallel segments. This issue is solved by complex AC circuit analysis, which allows
simple calculation of a complex impedance. However, this method is completely incompatible with voltage
waveforms that are not explicitly sinusoidal, let alone periodic.
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3 Methodology

3.1 Fourier circuit analysis method

The desire to harness the powers of both approaches justifies Fourier circuit analysis. By Fourier
decomposing periodic voltage waveforms into sinusoidal terms, we can exploit the linearity of passive
devices and theoretically attain its current response for any arbitrary voltage waveform. We begin by
inspecting Figure 2, which is a circuit of complex impedance Z(ω), stimulated by voltage V (t), resulting
in current I(t).

V (t)

I(t)

Z(ω)

Figure 2: Complex impedance circuit with arbitrary voltage waveform

We begin by defining the complex voltage as Ṽ (t) = V (t) + 0i, meaning V (t) = ℜ
(
Ṽ (t)

)
. This may

seem pointless, but is important as the complex current Ĩ(t) will differ from I(t).
Given that V (t) is periodic with period T , the next step is to expand Ṽ (t) using the complex Fourier

series. Details of this process are included in Appendix A, leading to the following result.

Ṽ (t) =
∑
n∈Z

νne
iωnt where νn =

1

T

∫ T

0
e−iωnt Ṽ (t) dt and ωn =

2πn

T
.

We define Ṽn(t) ≡ νne
i 2πn

T
t, so Ṽ (t) =

∑
n∈Z Ṽn(t). This enables us to redraw Figure 2 as in Figure 3,

splitting the original voltage waveform into a set of independent AC sources.

Ṽ−2(t) Ṽ−1(t) Ṽ0(t) Ṽ1(t) Ṽ2(t)

Ĩ(t)

Z(ω)

Figure 3: Complex impedance circuit with Fourier decomposed voltage source

It is here that we exploit the fact that circuits made solely of these passive devices are linear. In being
linear, the principle of superposition applies to voltage sources and corresponding currents. This means
that if a circuit is stimulated by a voltage V (t) = VA(t) + VB(t), the resulting current will be equal to
I(t) = IA(t) + IB(t) where IA(t) is the current due to source A alone, and the same for B. It is for this
reason that we can calculate the current, Ĩn(t), due to each of the Ṽn(t), and the sum of these is the final
Ĩ(t). Using the AC Ohm’s law:

I(t) = ℜ
(
Ĩ(t)

)
= ℜ

(∑
n∈Z

Ĩn(t)

)
= ℜ

(∑
n∈Z

Ṽn(t)

Z(ωn)

)
.
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3.2 Approximating the series

The method of computation, in theory, is to: determine Z(ω) for the circuit; calculate the Fourier
coefficients for the input voltage, νn; tabulate them; apply the impedance Z(ωn) to each; and recombine
them to find the current. However, a computer cannot compute the infinite number of coefficients, so an
approximation is made in choosing the number of coefficients to include. Furthermore, the calculation
of many different νn involves many integrals, which entails long runtimes for a computer, whether done
anaytically or numerically. We employ a further simplification to allow the computer to approximate each
coefficient much more rapidly.

This method is explained in detail within Appendix B, but involves modelling the voltage waveform
with a piecewise-linear function, defined by a series of straight lines that connect equally-spaced samples
of the voltage. The complex Fourier series coefficients for this sort of piecewise linear function were
calculated analytically, leading to the result that, for an input waveform Ṽ (t) with period T , the Fourier
decomposition up to Nth order, when the function is approximated with a list of P samples, is given by:

ṼP,N (t) =
1

P

P−1∑
k=0

zk +
1

T

N∑
n=−N
n̸=0

1

ωn
2

(
P−1∑
k=0

e−iωn
k
P
T (mk−1 −mk)

)
eiωnt

where zk = Ṽ
(
k
P T
)
and mk = P

T (zk+1 − zk).

Thus, with an impedance of Z(ω):

IP,N (t) = ℜ

 1

PZ(0)

P−1∑
k=0

zk +
1

T

N∑
n=−N
n̸=0

1

ωn
2Z(ωn)

(
P−1∑
k=0

e−iωn
k
P
T (mk−1 −mk)

)
eiωnt

.

It is noted that limP,N→∞ IP,N (t) = I(t).

3.3 The capacitor catastrophe

From the form of the current, it is evident that exceptions will be encountered if the impedance is 0.
Furthermore, an impedance tending to infinity, due to a divide by 0 in Z(ω), cannot be computed. Recall
that for an LCR circuit, the impedance is Z(ω) = R + i (ωL− 1/ωC). Ideally, we would be able to set
R = 0, L = 0 or C = ∞ to remove the components and test the response of just an LR, LC or RC circuit.

Without a capacitor, setting R = 0 will always create issues for the DC component as Z(ω0) = R,
reflecting that no real circuit has zero resistance. When this case is desired, the resistance was set to some
sufficiently small number, so to have a comparably negligible impact.

The larger issue comes from the capacitor when there is a non-zero DC term. Problematically, despite
many voltage waveforms having no DC term as the voltage analytically integrates to 0, almost all the
time, the piecewise approximation of the function will integrate to a small, non-zero value, so long as P is
finite. This means that when a finite capacitor exists, Z(0) must be assumed to always tend to negative
infinity, which a computer cannot handle.

As a result, an exception had to be made for the LCR circuit, with a manual, user-controlled, switch to
indicate the presence of a finite capacitor. When enabled, the DC current term is forcefully set to vanish.
For more complicated circuits, this sort of exception would need to be made whenever the impedance
could be evaluated to infinity, which is problematic and makes automated calculation of the impedance a
very complicated process.

It is for this reason that the scope of the experiment was refined to solely include the LCR circuit, how-
ever the impedance for more sophisticated circuits could be calculated by hand and inserted. Ultimately,
the usefulness of this program is limited by the user’s familiarity of AC circuit theory.
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4 Results

We examine the operation of the model in comparison with the predictions made above, which were
confirmed experimentally in the EL01 and EL02 practicals. For all of the tests, values of N = P = 2500
were chosen and the program halted within a few seconds. Throughout all tests, SI units were used.

4.1 Harmonic voltage

We begin with an intermediate set of LCR values, including L = 0.005[H], C = 2[F] and R = 0.3[Ω].
Figure 4 illustrates one period of the result for a voltage waveform V (t[s]) = sin t [V], so T = 2π[s].

Figure 4: LCR response to V (t[s]) = sin t [V] with L = 0.005[H], C = 2[F] and R = 0.3[Ω]

The current curve appears sinusoidal and sees a first peak of roughly 1.73[A] at 0.54[s]. The afforemen-
tioned formula for LCR impedance evaluates to roughly 0.5788e−1.0259i, predicting a first current peak of
roughly 1.7277[A] at 0.5449[s]. These figures agree at the provided level of precision.

To test the model for the circuit’s inductance limit, the same signal was used, but with a negligible
resistor and no capacitor. Values of R = 0.00001[Ω] and L = 0.5[H] were chosen. The impedance formula
tends to a value of 0.5i which indicates a quarter phase lag of current behind voltage and a doubling in
amplitude. Figure 5 shows the results of the model.

Figure 5: LR response to V (t[s]) = sin t [V] with L = 0.5[H] and R = 0.00001[Ω]

With a clear lag of quarter phase and doubled amplitude, the model has successfully found the expected
characteristics of this LR circuit and continues to perform for harmonic voltage sources.

4.2 Stepping voltage for underdamped LCR circuit

It appears as though, from the model’s construction, that only periodic voltages are suitable. However,
we attempt to analyse transient effects of non-repeating signals of finite length by fabricating a periodic
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signal which begins with the real signal, and then freezes sufficiently long before repeating to display all
transient effects.

This approach was taken to test the stepping voltage. An input voltage was chosen of the form
V (t[s]) = θ(−t − 50) [V] with the repeating period set to between t ∈ [0[s], 100[s]). We also choose an
underdamped circuit (γ < ω0), as it would be the easiest to compare to theory. To ensure this, the values
chosen were L = 1[H], C = 0.5[F] and R = 0.2[Ω]. Figure 6 demonstrates the output of the program.

Figure 6: LCR response to V (t[s]) = θ(−t− 50) [V] with L = 1[H], C = 0.5[F] and R = 0.2[Ω]

As expected, Figure 6 exhibits characteristics of a sinusoidal function with exponentially decaying am-
plitude. From the graph, the space between 18 consecutive axes intercepts was roughly 40.04[s], implying
an oscillating period of 4.45[s]. This period should be 2π(ω0

2−γ2)−1/2 which evaluates to roughly 4.454[s].
Furthermore, based on the form of the solution, we expect the ratio of each peak’s amplitude to

the previous one to be e−2πγ(ω0
2−γ2)

−1/2

, which evaluates to roughly 0.6406. From the model, the ratio
between one peak and the peak 4 prior was roughly 0.16, which implies a peak-to-peak ratio of 0.64. These
figures indicate the model was successful reproducing predicted results.

This supports the model’s usefulness for any voltage waveform, and not simply those that are periodic.

4.3 Other predictable examples

While they are not validated in a lab during the physics practical course, two more examples using
inductors and capacitors have predictable solutions. From the formulae, VL = LdI

dt and I = C dVC
dt , it was

predicted that a periodic stepping voltage in an inductor would produce a sawtooth current, and that the
opposite would be true for a capacitor. By setting the resistance arbitrarily low, Figure 7 demonstrates
the stepping voltage in an inductor, L = 1[H], and a sawtooth voltage in a capacitor, C = 1[F].

Figure 7: Inductor L = 1[H] with stepping voltage (left); Capacitor C = 1[F] with sawtooth voltage (right)

As expected, in both cases, the result follows what was predicted from the differential equations, as
the derivative of a sawtooth wave is a stepping wave.

Department of Physics University of Oxford Page 6 of 15



E. T. Beach March 12, 2025 CO20: Open Simulation Topic

5 Interpretation and Extension

5.1 Accuracy of predictions

All of the tests so far would indicate that for high values of N and P , the waveforms produced by the
model tend to the true waveforms. This is especially surprising for the cases where there were discontinu-
ities in the current and its first derivative. In these cases, the Fourier series does not converge uniformly
to the desired function (Lukas, 2023). However, with a high enough sampling rate and with enough terms
in the series, these effects can be made less and less severe.

Given that this approximation has two computing parameters, N and P , it is important to also discuss
which one should be prioritised for highest accuracy with lowest runtimes.

The number of samples, P , is equal to the number of terms in the sum for each integral coefficient
approximation. The number of phasors, N , is equal to the number of integral approximations which are
calculated. Assuming the time to calculate the Fourier coefficients for voltage and current is much larger
than the time to create arrays and produce the plot, then the best estimate for the time complexity of
the program is O(NP ) in Big O notation. This is subject, however, to the fact that N also signifies
the number of times the impedance is calculated and applied. This means that increasing N does incur
greater time losses than increasing P .

This result is acceptable when considering the importance of the role that each statistic plays. The
value of P determines how accurately the voltage is represented when calculating the current. Following
this, the value of N dictates how accurately the current is calculated, based on the approximated voltage
waveform. As such, the value in increasing N is strictly limited by the value of P , and increasing N will
only calculate the true current more accurately if P is sufficiently high.

5.2 Extension to bandpass filter

Having shown how effective the model is in predicting the current in a circuit, we extend its utility only
slightly by considering other quantities determined with AC circuit analysis. Figure 8 shows a bandpass
filter with input and output voltage.

Ṽin(t)

R

C Ṽout(t)L

Figure 8: Passive bandpass filter circuit

Assuming a sinusoidal input voltage, such that Ṽin(t) ∝ eiωt, the circuit is treated as a potential di-

vider, finding that Ṽout(t)

Ṽin(t)
=
(
1 + iR

Lω0

(
ω
ω0

− ω0
ω

))−1
where ω0 = (LC)−1/2. The purpose of the bandpass

filter is to bias the output voltage so that signals with frequency ω0 pass unaltered, while the level of at-
tentuation increases with deviation from ω0. The level of attentuation for the same deviation of frequency
is increased by increasing the value of R.

This situation is very similar to the previous calculation, except we have replaced Ṽ (t) 7→ Ṽin(t),

Ĩ(t) 7→ Ṽout(t) and Z(ω) 7→ 1 + iR
Lω0

(
ω
ω0

− ω0
ω

)
. Thus, we attempt to solve for the output voltage for an

arbitrary input voltage, analogously to before.
To test this, we chose values of L = 0.1[H], C = 10[F] and R = 10000[Ω]. This sets ω0 = 1[rad s−1] and

ensures that only signals with this frequency will be allowed to pass. Figure 9 shows the passing of three
different square waves into the filter, with angular frequencies of 1[rad s−1], 1

2 [rad s
−1] and 1

3 [rad s
−1].
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Figure 9: Bandpass filter ω0 = 1[rad s−1] with square wave of ω/ω0 = 1(left); 12(middle); 13(right)

Figure 9 demonstrates the correct theoretical results, as we expect it to illustrate the amplitude of
each sinusoid term with angular frequency ω0 in the Fourier series of a square wave of angular frequency
ω. The result demonstrates how the sinusoid Fourier coefficient for a square wave will vanish unless ω0/ω
is an odd integer.

6 Conclusions

This experiment has validated an approach to analysing passive linear circuits using the complex
Fourier series. The program reaps the benefits of both differential equation and complex AC impedance
solutions to circuits by empowering the user to calculate the current response of any circuit to any arbitrary
input voltage waveform. It completes this process to a high degree of accuracy with very low runtimes by
calculating the Fourier coefficients for a piecewise-linear approximation to the voltage waveform, rather
than performing integrals.

The only discovered flaw with the approach is that it encounters exceptions when the impedance for
a certain frequency tends to infinity. This means the user must compute their own value for the complex
impedance, limiting the usefulness of the tool by the user’s knowledge.

The approach, however, has demonstrating capabilities beyond calculating currents from voltages,
into the field of predicting any quantities in a circuit that could normally be attained by complex number
methods, were the source sinusoidal. With these observations in mind, the program appears to be an
effective simulator for passive linear circuits.
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Appendix A The Complex Fourier Series

The following summary is adapted from (Lukas, 2023, p. 50).

Consider a vector space V over the field C spanned by the vector functions defined as:

|ϵn⟩ ≡ ϵn : R −→ C for n ∈ Z

such that t 7→ ϵn(t) =
1√
T
eiωnt {ωn = 2πn/T}.

We first note that ϵn(t) = ϵ−n(t) and by interpreting i as the imaginary unit and T as a real positive
number, we see that, for n ̸= 0, |ϵn⟩ is a phasor of length 1/

√
T that rotates (anti)clockwise for (posi-

tive)negative values of n with period T/n. Furthermore, we have that |ϵ0⟩ is a constant of 1/
√
T .

On V , we define vector addition and scalar multiplication as is standard for vector functions, allowing
the formation of linear combinations of the form:

|f̂⟩ =
∑
n∈Z

cn|ϵn⟩ ≡ f̂ =
∑
n∈Z

cnϵn.

By integrating over period T , we can also define the sesquilinear form, ⟨·, ·⟩ : V × V −→ C, such that:(
|f̂⟩, |ĝ⟩

)
7→ ⟨|f̂⟩, |ĝ⟩⟩ ≡

∫ T

0
f̂(t) ĝ(t) dt.

This form satisfies all the conditions of a complex scalar product, including that ⟨|f̂⟩, |ĝ⟩⟩ = ⟨|ĝ⟩, |f̂⟩⟩.
By checking that ⟨|ϵm⟩, |ϵn⟩⟩ = δmn, we find that the |ϵn⟩ form an orthonormal basis for V , with respect
to this scalar product. This allows us to define the basis elements of V ∗, the dual space to V :

⟨ϵn| ≡ ϵ∗n : V −→ C for n ∈ Z

such that |f̂⟩ 7→ ϵ∗n(|f̂⟩) =
∫ T

0
ϵ−n(t) f̂(t) dt for f̂ ∈ V.

We can also form linear combinations of these dual vectors. If |f̂⟩ =
∑

n∈Z cn|ϵn⟩, then we confirm

that ⟨f̂ | =
∑

n∈Z cn⟨ϵn|. Using these dual vectors, we rewrite the notation for the scalar product between

|f̂⟩ and |ĝ⟩ as ⟨f̂ |ĝ⟩.

We now consider the vector space consisting of all periodic complex functions f̂ : R −→ C with period
T such that t 7→ f̂(t). Fourier’s proof shows that this is exactly the space V . This makes it possible
to express any complex-valued periodic function as a linear combination of the afforementioned complex
exponentials with discrete angular frequencies.

To find the coordinates of the function with respect to this basis, we use the inner product found.

If f̂(t) =
∑
n∈Z

cnϵn(t) then cm = ⟨ϵm|f̂⟩ =
∫ T

0
ϵ−m(t) f̂(t) dt for m ∈ Z.
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Appendix B Fourier Series of Piecewise-Linear Voltage Approximation

Given an arbitrary complex voltage waveform with period T of the form Ṽ = Ṽ (t), we produce a piece-
wise linear approximation, with known Fourier series, thus allowing a computer to rapidly approximate
the voltage fourier coefficients without performing any integrals.

The piecewise-linear function approximation

The user decides a positive integer number of samples P . This provides a set of P complex numbers,
zk, for k ∈ {0, 1, . . . , P − 1}, defined by the value of the voltage at equally-spaced times in T such that
zk = Ṽ

(
k
P T
)
. In essence, the piecewise approximation of Ṽ is a function that connects each of these

points, at their respective time, in straight line segments.
Immediately, we can calculate the gradients of these piecewise segments, mk, where mk = P

T (zk+1−zk).

This implies that both zk = mk
k
P T + ck and zk+1 = mk

k+1
P T + ck for some set of complex intercepts, ck,

given by ck = zk −mk
k
P T .

Finally, this gives us a piecewise approximate complex voltage, ṼP : R −→ C, such that t 7→ ṼP (t)
defined between t ∈ [0, T ] and periodic elsewhere such that:

ṼP (t)|t∈[ kP T, k+1
P

T) = mkt+ ck for k ∈ {0, 1, . . . , P − 1}.

The complex Fourier coefficients

We now apply the complex Fourier series to the piecewise function. If ṼP (t) =
∑

n∈Z cnϵn(t) for cn,
we must treat the n = 0 case separately.

When n = 0, the exponential term disappears and the inner product is calculated as:

c0 =

∫ T

0
ϵ−0(t) ṼP (t) dt

=
1√
T

P−1∑
k=0

∫ k+1
P

T

k
P
T

(mkt+ ck) dt

=
1√
T

P−1∑
k=0

[mk

2
t2 + ckt

] k+1
P

T

k
P
T

=
1√
T

P−1∑
k=0

(
mk

2

((
k

P
T

)2

+ 2
k

P
T + 1

)
+ ck

(
k

P
T + 1

)
− mk

2

(
k

P
T

)2

− ck
k

P
T

)

=

√
T

P

P−1∑
k=0

(
mk

k

P
T + ck +

1

2
mk

T

P

)

=

√
T

P

P−1∑
k=0

zk +
�����������T
√
T

2P 2

P−1∑
k=0

(zk+1 − zk) {z0 = zP }

=

√
T

P

P−1∑
k=0

zk.

Noting that ϵ0(t) = 1/
√
T , this means that the constant term in the series is

∑P−1
k=0 zk/P , which is a

sort of “centre of mass” for the points.
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Using a similar process, we calculate the coefficient where n ̸= 0 to be:

cn =

∫ T

0
ϵ−n(t) ṼP (t) dt

=
1√
T

P−1∑
k=0

∫ k+1
P

T

k
P
T

(mkt+ ck) e
−iωnt dt

=
1

ωn
2
√
T

P−1∑
k=0

[
e−iωnt (mk + iωn (mkt+ ck))

] k+1
P

T
k
P
T

=
1

ωn
2
√
T

P−1∑
k=0

mk

(
e−iωn

k+1
P

T − e−iωn
k
P
T
)

+

((((((((((((((((((((
i

ωn

√
T

P−1∑
k=0

(
e−iωn

k+1
P

T zk+1 − e−iωn
k
P
T zk

)
{e−iωn

0
P
T = e−iωn

P
P
T }

=
1

ωn
2
√
T

P−1∑
k=0

e−iωn
k
P
T (mk−1 −mk) {define m−1 = mP−1}.

With these calculations completed, we write an expression for the Nth Fourier series approximant,
ṼP,N (t), to the piecewise complex function, ṼP (t), being:

ṼP,N (t) =

N∑
n=−N

cnϵn(t)

=
1

P

P−1∑
k=0

zk +
1

T

N∑
n=−N
n̸=0

1

ωn
2

(
P−1∑
k=0

e−iωn
k
P
T (mk−1 −mk)

)
eiωnt.

We, finally, have that limN→∞ ṼP,N (t) = ṼP (t) and limP→∞ ṼP (t) = Ṽ (t)

This gives us the final form of the complex voltage, as a sum of AC components, for each a complex
impedance can be applied based on the value of ωn.
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Appendix C Python Code

Find below the code which has taken a stepping voltage waveform, period of 100[s] period and under-
damped LCR circuit impedance function, before plotting the current with the voltage.

# This script takes an arbitrary voltage waveform, as well as details for

# the complex AC impedance of a chosen circuit. By deconstructing the voltage

# waveform into AC components with a complex Fourier series, the current

# response is calculated and then plotted over 1 period with the voltage.

# Author: Ewan Thomas Beach

# Date: 23/11/2023

# Organisation: University of Oxford

# Department: Department of Physics

## Importing relevant packages

import matplotlib.pyplot as plt

import numpy as np

from numpy import pi,sin,cos,sqrt

from cmath import phase

### Section 1: User Inputs

## Waveform inputs

T = 100 # identify waveform period [+ve real]

def Vreal(t): # identify voltage waveform as function of time (starts t=0)

if t<T/2:

return 1

else:

return 0

def Vimag(t): # choose arbitrary imaginary voltage

return 0

## Circuit components (LCR circuit as base)

c = 1 # include finite capacitor [boolean]

L = 1 # inductance of LCR circuit [+ve real or zero]

C = 0.5 # capacitance of LCR circuit [+ve real]

R = 0.2 # resistance of LCR circuit [+ve real]

def imp(W): # identify function for finding AC complex impedance of circuit

if c == 1:

return complex(R,W*L-1/W/C)

else:

return complex(R,W*L)
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## Approximation and plotting preferences

P = 2500 # number of points in piecewise waveform approximation [+ve integer]

N = 2500 # maximum Fourier series partial sum index [+ve integer]

f = 1 # include voltage waveform on graph [boolean]

### Section 2: Piecewise Voltage Approximation

pt = np.full(P,T/P)

for i in range(P):

pt[i]=i*pt[i] # defining array of times

px = np.array(list(map(Vreal,pt))) # defining array of voltage values

py = np.array(list(map(Vimag,pt))) # defining array of imaginary voltage values

v0 = complex(sum(px),sum(py))/P # immediately calculating DC voltage

pt = np.append(pt,T) # repeating initial term at end

px = np.append(px,px[0])

py = np.append(py,py[0])

## Calculating complex gradients

mx = np.zeros(P)

my = np.zeros(P)

for i in range(P):

mx[i] = (px[i+1]-px[i])/(T/P)

my[i] = (py[i+1]-py[i])/(T/P)

m = list(map(complex,mx,my))

### Section 3: Decomposing Voltage Signal

w = 2*pi*(np.array(range(2*N+1))-N)/T # assign frequencies

def complexp(phase):

return complex(cos(phase),sin(phase))

expons = list(map(complexp,-w*T/P)) # produce list of complex exponentials

def vn(n): # function for finding complex voltage coefficient

items = [0]*P

for i in range(P):

items[i] = expons[N+n]**i*(m[(i-1)%P]-m[i])

return sum(items)/T/w[N+n]**2
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## Collecting coefficients in a list

Vn = [0]*(2*N+1)

Vn[N] = v0

for i in range(N):

Vn[i] = vn(i-N)

Vn[2*N-i] = vn(N-i)

## Calculate voltage radii and initial phases

Rv = np.array(list(map(abs,Vn)))

Ov = np.array(list(map(phase,Vn)))

### Section 4: Calculating Current Waveform

In = Vn # mimicking voltage coefficients

if v0 != 0: # giving special (capacitor) treatment to the DC value

if c == 1:

In[N] = 0

else:

In[N] = In[N]/R

## Applying impedances to voltage coefficients

for i in range(N):

In[i] = In[i]/imp(w[i])

In[2*N-i] = In[2*N-i]/imp(w[2*N-i])

## Calculate current radii and initial phases

Ri = np.array(list(map(abs,In)))

Oi = np.array(list(map(phase,In)))

### Section 5: Producing The Final Data Set

## Defining functions for calculating AC contributions

def gen_V_dis(t):

return Rv*cos(w*t+Ov)

def gen_I_dis(t):

return Ri*cos(w*t+Oi)
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## Calculating voltage and current using radii and phase

V=np.zeros(P+1)

I=np.zeros(P+1)

for i in range(P+1):

V[i] = sum(gen_V_dis(pt[i]))

I[i] = sum(gen_I_dis(pt[i]))

### Section 6: Producing The Plot

if f:

plt.plot(pt,V,"b",linewidth=3,label="Voltage")

plt.plot(pt,I,"r",linewidth=3,label="Current")

plt.xlabel("Time")

plt.ylabel("Measured Quantity")

plt.legend()

plt.show()
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